
• Motion Control of Industrial Robots by 3D Mouse.

Examensarbete 15 högskolepoäng C-nivå

MOTION CONTROL OF INDUSTRIAL
ROBOTS BY 3D MOUSE

Reg.kod: Oru-Te-ET3003-D111/08

Marcos Pascual Prieto

Elektroteknik C, Examensarbete, 15 högskolepoäng

Örebro 2008

Supervisor: Ivan Kalaykov
Examiner: Sune Bergelin

1

• Motion Control of Industrial Robots by 3D Mouse.

Abstract:
Desired motions of industrial robots may be programmed by using 3D force/torque
sensors included in an external position control loop. This, however, is a very
expensive solution, as 3D force/torque sensors have high prices. Therefore, the goal
of the project is to develop a low cost system for driving directly the motion of an
industrial robot based on a commercial 3D mouse manufactured by 3DConnexion.
The mouse will be attached to the robot end effector such that a human operator can
push/pull/rotate the mouse handle in the desired direction of motion. The objective is
to develop an application that simulates the motion of one joint of the robot. This joint
will be attached to one fixed point and because of that the translation and rotation
movement will be considered the same.
The final application is a Microsoft Visual Studio project. In this application we have
6 different 2D charts. Three of them represent the current position, that is, the position
that the robot has at every moment, or the physical location of the 3D mouse. The last
three charts represent the vector state, that is, the values of the data that the 3D mouse
reveived at any moment.

2

• Motion Control of Industrial Robots by 3D Mouse.

Table of contents:
1. Introduction.

1.1 Background……………………………………………………5
 1.1.1. Lead-Through Programming……………………………...5

1.1.2. Walk-Through Programming……………………………..6
 1.1.3. Off-Line Programming……………………………………6
 1.1.4. Comparison between methods.……………………………6

1.2. Goal of the project……………………...……………………..8
1.3. General requirements and limitations………………………...8

2. Feasibility study.
2.1 Goal of the study…………………………………………......11
2.2. Technical details of 3D mouse.

2.2.1. Kinematics……………………………………………….13
 2.2.2. Electronic circuit….……………………………………...15

2.2.3. Communication protocol………………………………...17
2.2.3.1. Preliminary study with 2D mouse…….…..…………17
2.2.3.2. Conclusion of the preliminary study...........................19
2.2.3.3. Communication Protocol of the 3D mouse.................20

3. Technical description of the developed system.
3.1. Software..24
3.2. Programming language...25
3.3 General structure..25

3.3.1 Specifications of the project..26
3.3.2 Reading the 3D mouse commands....................................27
3.3.3 Representation of the data...32
3.3.4 Technical aspects of the representation.............................35

3.3.4.1. Translation vs. Rotation...35
3.3.4.2. Handle Vibrations..35

3

• Motion Control of Industrial Robots by 3D Mouse.

4. Experiment with the system.
4.1 Current position..36
4.2. Vector state..38
4.3. Test scenario..40

4.3.1. Purpose of the test...40
4.3.2. Hardware requirements...40
4.3.3. Software requirements...40
4.3.4. Description of how to perform the test..............................40
4.3.5. Expected results or succeed criteria for the test................41

5. Conclusions.
5.1. Project evaluation...43
5.2. Options for future development..44

6. References...45

4

• Motion Control of Industrial Robots by 3D Mouse.

1. Introduction.
1.1 Background.
To program the motions of an industrial robot I can choose basically between 3
different techniques: lead-through method, walk through method and off-line
programming. All of these three programming techniques are teaching method
techniques. To choose the most suitable in our case, it is necessary to get some
knowledge about these techniques and also to analyse their respective advantages and
disadvantages to decide, then, which one is the best for this project.

Programming by teaching methods:
A program consists in individual command steps which state either the position or
function to be performed, along with other data such as speed, delay times, sample
input device, activate output device, execute, etc.
When making a robot program, it is necessary to establish a physical or geometrical
relationship between the robot and other equipment to be served by the robot. To
establish those coordinate points precisely within the robot's working envelope, it is
necessary to control the robot manually and to teach physically the coordinate points.
To do this and determine other functional programming information, three different
teaching or programming techniques are used: lead-through, walk-through and off-
line.

 1.1.1. Lead-Through Programming:

This is performed manually, using a teaching pendant that will guide the robot
in performing a prescribed task.
 This method of teaching uses a proprietary
teach pendant (the robot's control is placed in a
"teach" mode), which allows trained personnel
to lead physically the robot through the desired
sequence of events by activating the
appropriate pendant button or switch. Position
data and functional information are taught to
the robot, and a new program is written. The
teach pendant can be the sole source by which
a program is established, or it may be used in
conjunction with an additional programming
console and the robot's controller. When using
this technique of teaching or programming, the
person performing the teach function can be
within the robot's working envelope, with
operational safeguarding devices deactivated or
inoperative. [1]

5

• Motion Control of Industrial Robots by 3D Mouse.

 1.1.2. Walk-Through Programming:
This is performed manually when the user actually moves the robot through
physical contact.
A person doing the teaching has
physical contact with the robot
arm and actually gains control
and walk the robot's arm
through the desired positions
within the working envelope.
During this time, the robot's
controller is scanning and
storing coordinate values on a
fixed time basis. When the
robot is later placed in the
automatic mode of operation,
these values and other functional information are replayed and the program
runs as it was taught. With the walk-through method of programming, the
person doing the teaching is in a potentially hazardous position because the
operational safeguarding devices are deactivated or inoperative. [1]

1.1.3. Off-Line Programming:
The robot program is generated using a remote computer console and is later
transferred to the actual robot controller.
The programming establishing the required sequence of functional and
required positional steps is written on a remote computer console. Since the
console is distant from the robot and its controller, the written program has to
be transferred to the robot's controller and precise positional data established
to achieve the actual coordinate information for the robot and other equipment.
The program can be transferred directly or by external memory. After the
program has been completely transferred to the robot's controller, either the
lead-through or walk-through technique can be used to obtain the current
positional coordinate information for the robot's axes.
When programming robots with any of the three techniques discussed above,
the program is generally required to be verified and slight modifications in
positional information to be made. This procedure is called program touch-up
and is normally carried out in the teach mode of operation. The teacher
manually leads or walks the robot through the programmed steps. Again, there
are potential hazards if safeguarding devices are deactivated or inoperative. [1]

6

• Motion Control of Industrial Robots by 3D Mouse.

1.1.4. Comparison between methods:

Now, we can see a comparison of the programming methods summarized in the table
below:

Lead-
Through

Walk-
Through

Off-line
Programming

Robot Type Real Real Virtual

Work Cell Real Real Virtual

Evaluation Inflexible Inflexible Flexible

Intuitiveness Low High Low

Safety Issue Yes Yes No

As we can see in the table and the description of the programming methods, there are
several methods with their respective advantages and disadvantages.
In this project, the method used will be Walk-through. Indeed, in the specification of
the project, it was said that the mouse should be attached to the robot arm, and with
this specification, the programming method must be Walk-through.
The programming method Lead-through cannot be used to develop this project
because in this method, the mouse should not be attached to the robot arm, it cannot
be moved with every movement of the robot. Moreover, to handle the robot with this
purpose, it already exists a tool called IRC5 Control System.

In conclusion, the Walk-through programming method will be the method used to
carry out this project because it is the most suitable option to meet with the
specification of the project.

7

• Motion Control of Industrial Robots by 3D Mouse.

1.2 Goal of the project.

Now that it is clear that the walk-through programming technique is going to be used,
I can talk about the project as I understand it.

The idea of the project is to develop a low cost system to drive the robot ABB
IRB140, using the commercial 3D mouse SpaceNavigator manufactured by Logitech.

The device, in this case the 3D mouse, has to be attached to the robot, because the
programming method used is walk-through.

It means that the human operator who is going to handle the robot has to follow the
movement at the same time as he is handling/touching the handle of the mouse.

The simple fact that the mouse is attached to the robot and that it moves with each of
its movement, changes everything when you have to programme the movements of
the robot arm.

The point is that we have to know the current position of all the 6 joints of the robot.
This data is totally necessary because otherwise, if you make a movement and the
mouse makes this movement as well, the coordinates of the position of the mouse will
change, the following movement will have the wrong coordinates and the movement
will not reach the desired position.

For this reason that it is totally necessary to know the current position of the robot
and, according to this data, decide which part of the robot has to be moved and in
which direction to get the same movement with the mouse's handle.

1.3. General requirements and limitations.

The available robot is: ABB IRB-140
This robot is a compact, 6-axes multi-
purpose robot. The IRB 140 can carry a
maximum of 5kg and a reach of 810mm
with 360 degrees rotational, fast
acceleration, and a large working envelope.
It can be attached to the floor, suspended or
mounted on the wall at any angle to enable
flexible automation.

In our case, the robot will be attached
to the floor as we can see on the figure 4:

8

• Motion Control of Industrial Robots by 3D Mouse.

The 6-axes anthropomorphic robot’s arms are significantly more flexible,
adaptable and standardised than others. Anthropomorphism comes from the
Greek “anthropos” (human) and “morphe” (shape); it represents the fact to
attribute human qualities to inanimate or non-human things. As suggested by
their name, the arms mimic the movements of a human arm.

We can see on the diagram below that axis 1 and 2 represent the human
shoulder, axis 3 and 4 the elbow and forearm, and axis 5 and 6 the wrist.
This figure represents pretty well the arm of the IRB-140 robot:

The available mouse: SpaceNavigator.
The mouse chosen to be used in our case is the SpaceNavigator manufactured
by Logitech. This is a commercial device that everybody can buy. As it is a
commercial device, we can access to the drivers, but the problem is that we
cannot edit them.
At this point, the problem is that as the drivers are not editable, we have to
develop an application which allows us to do what we need to handle the robot
through the 3D mouse.

9

Axis Function:

Axis 1: Rotation of the complete robot

Axis 2: Forward and reverse movement of the
lower arm.

Axis 3: Vertical movement of the upper arm

Axis 4: Rotation of the complete wrist centre

Axis 5: Bending of wrist around the wrist
centre

Axis 6: Rotation of mounting flange (turn disc)

• Motion Control of Industrial Robots by 3D Mouse.

This is the device that is going to be used, the SpaceNavigator:

The most important of 3D mouse devices is the controller cap. Push, tilt, pull
or twist the cap a fraction of millimetre to simultaneously pan, rotate and
zoom 3D imagery. Increase the pressure in order to go fast or decrease the
pressure to make the appropriate adjustments.
On the picture below, we can see the kinds of movements we can do with the
SpaceNavigator:

 Pan Left/Right & Zoom Pan Up/Down &Rotate Tilt

Figure 7: Different movements of the handle.

10

• Motion Control of Industrial Robots by 3D Mouse.

2. Feasibility study

2.1. Goal of the study.

The 3D mouse has a USB port connection. With this connection, the 3D mouse and
the computer communicate with each other. Looking at this, at the end we have to
connect directly the 3D mouse with the robot arm and we need to know which codes
the mouse sends through the USB port with each movement of the mouse’s joystick.

At the very beginning, we had two possible investigation lines. One of them was to
disassemble the device and try to understand how it works. The other possibility was
to find some software which decodes the data that the 3D mouse sends and try to
understand the correspondence between the movements of the mouse and the codes
received.

Disassemble the device:

The first solution that I took was the dismantling of the device to see what
there was inside with the aim of trying to understand how the 3D mouse works
internally. We can say that the device is divided in 3 parts.

1. The first part is composed of the infra-red LED diodes and the sensors which
detect the infra-red light. There are six infra-red diodes and just in front of each of
them there is a sensor.

2. The second part is the external part that you touch when you are handling the
device. This plastic piece is found between the sensors and LED diodes.

3. The third and last part is the electronics. This is composed by two PCB boards.
These two parts are connected by a plastic connector and one of them has a
connection with the USB connector.

11

• Motion Control of Industrial Robots by 3D Mouse.

At this point, in order to continue in the same way, the idea was to forget the second
PCB board, which has the microcontroller and processes the data of the first PCB
board and focus only in the first PCB board.
To do so, the signals would be taken directly from the red plastic connector of the first
PCB board and the data would be acquired through an external microcontroller; the
latter should be built in an external board with its additional components and then, it
should be connected to the USB port.
This option can be possible only if we have the description of the electronic circuits
that the mouse is composed. To get this knowledge it was necessary to decode track
by track with the multimeter checking the continuity of the electronic circuit. Here is
the scheme of the circuit decoded using OrCAD Capture:

 Figure 8: Scheme of the electronic circuit.

12

• Motion Control of Industrial Robots by 3D Mouse.

This possibility was an interesting solution, but before starting to implement it, I
decided to try to investigate the other possible alternative; that is, the use of a USB
Traffic Analyser.

Use a USB Traffic Analyser:

The second possibility or different solution for this project was to find some software
which analyses the USB port traffic. If we could manage to understand the data that
the mouse sends through the USB port with each movement, later we would be able to
handle the robot arm according to the movements of the 3D mouse.

The first step was to find the most suitable software which would allow us to see the
codes sent. All the programs used were trial versions:

Advanced USB Port monitor:[6] The trial version of this software gives us the
data trend, how many bits per second are sent by the device to the PC and vice
versa, and another amount of data that is not useful for the task that we need.

Device Monitoring Studio 5.2.2:[7] This software is one of the best options
because it has exactly what we need to analyse the traffic through the USB
port:
Indeed, it has two tools that, when combined, give us the exact information
that we need to decode the movements of the 3D mouse.

1. URB View: USB Request Block. This visualizer decodes raw packets
and control requests sent to and received from the USB device.

2. HID View: This visualizer decodes HID specific packets and data
structures and displays them in the comfortable way. It is ideal for
devices belonging to Human Interface Device class.

According to the results found and regarding all the possibilities to develop this
project, we can conclude that the most suitable solution is to use the Device
Monitoring Studio. The use of this software will only provide us with the knowledge
of the way the data is sent through the USB port to the computer.
Once we have understood how the mouse sends the data and which byte corresponds
to each movement, we can continue to the next step.

13

• Motion Control of Industrial Robots by 3D Mouse.

2.2. Technical details of 3D mouse.

2.2.1. Kinematics.

The key component to carry out this project is the 3D mouse Space Navigator,
developed by Logitech.
In the following section we are going to study and describe the kinematics of this 3D
mouse; that is, to disassemble each part of the mouse and see them separately.

 LED diodes and sensor’s part:
Looking at this part, we can see how the mouse translates mechanical
movements into electrical pulses that the computer can understand.

 Figure 9: Sensors and LED diodes part

As we can see on the picture above, this part of the mouse:
 Has a triangular shape.
 Has a pair of sensors in each corner.
 Has a pair of LED diodes in the middle of each side of the triangle.

The way this circuit works is the following: each sensor has its respective infra-
red LED diode in front of it. When the sensor receives the infra-red light it has a
value, and when it does not receive the light it changes.

14

• Motion Control of Industrial Robots by 3D Mouse.

Handle part:

This is the part that you can touch when you are handling the mouse. It has a
plastic column between each pair of sensors and LED diodes with a thin hole.
This hole lets pass the beam of light of each LED diode to the sensor, only if
the current position is the initial position.

The three bottom holes have a vertical orientation and the three top holes have
a horizontal orientation.

If you move the handle in some direction, the beam of light that the sensor is
supposed to detect is going to be cut off and the sensor's value is going to
change. With this information we can detect all the directions of movement.
There are three for the translation movements and another three for the
rotation movements.

 Figure 10: Handle part

2.2.2. Electronic circuit.

The electronics of this device is divided in two different parts; that is, two different
PCB boards.

The first PCB board is integrated in the same part as the sensors and the LED
diodes. The task of this part is to process the information that the sensors
supply. On this PCB, there are two dual 4 channel analogue multiplexers, two
operational amplifiers, resistors and capacitors. All of these components have
to process the information that goes directly through the plastic connector to
the other PCB.

15

• Motion Control of Industrial Robots by 3D Mouse.

 Figure 11

When the feasibility study was made, the electronics and the circuits of this
part had to be translating. This was done with a multimeter checking the
continuity of all the tracks of the electronic circuit.

The second PCB has one 8 bits microcontroller, ST72F621J4T1 by ST
Microelectronics, which manages the information supplied through the
connector by the sensors, and sends the respective codes and commands
through the USB port.
1. The red connector that we can see on the picture below is the part which

connects both PCB boards.
2. The white connector is the part which connects the second PCB board with

the USB connector that is going to make the communication between the
mouse and the computer.

3. The two yellow circles surrounded by a white square that we can see on
both sides of the PCB board are the two buttons that the 3D mouse has.

Figure 12

16

• Motion Control of Industrial Robots by 3D Mouse.

2.2.3. Communication protocol.

At the beginning of this project, one of the most important tasks was to find out how
the device communicates with the computer; that is, the communication protocol. It is
necessary to know which are the commands or the data that the device is sending with
each movement. With this information, later, we can translate the movements of the
mouse into orders for the robot.

The option that was taken to carry out this task was the USB traffic analyser. With
this tool, we can see and record the stream of bytes that the mouse sends in each
moment.

The tool that I have used to analyse the USB traffic is Device Monitoring Studio and I
decided to make some previous trials or experiments before starting directly with the
3D mouse. These experiments were made with a 2D mouse.

2.2.3.1. Preliminary study with 2D mouse.

The software that we are going to use, Device Monitoring Studio, has an interface
where we can use at the same time two very useful tools: URB View and HID View.
Those tools are described above in the section: goal of the study.

The 2D mouse that has been used to make this experiment is provided by Kensington.
Each time that you make a movement, the mouse sends a stream of 4 bytes. Each one
of these bytes has a different meaning that we are going to see in the explanation
below.

1 st Byte 2 nd Byte 3 rd Byte 4 th Byte
Left Click
Right Click
Central Click

Left-Right
Movement

Up-Down
Movement

Central Wheel
Movement Up-Down

First Byte:
The first byte is dedicated to control the three buttons that the mouse has:

Left Click Central Click Right Click
01 00 00 00 04 00 00 00 02 00 00 00

17

• Motion Control of Industrial Robots by 3D Mouse.

Second Byte:
The second byte provides us with the information about the left-right
movement.

When we move the mouse to the right the second byte is 01, but if we move
the mouse fast, the data that will be sent will be 02. This value will increase
each time that we move the mouse faster.

If we move the mouse to the left the second byte will be FF, in hexadecimal
format, and if we move faster the mouse the value will be reduced according
to the speed of the movement.

+ Faster Left
Mov.

Faster Left
Movement

Left
Movement

Right
Movement

Faster Right
Movement

+Faster
Right Mov.

00 FD 00 00 00 FE 00 00 00 FF 00 00 00 01 00 00 00 02 00 00 00 03 00 00

Third Byte:
This third byte is pretty similar to the second one. The only difference between
them is that this one is dedicated to the up-down movement.

+ Faster Up
Mov.

Faster Up
Movement

Up
Movement

Down
Movement

Faster Down
Movement

+Faster
Down Mov.

00 00 FD 00 00 00 FE 00 00 00 FF 00 00 00 01 00 00 00 02 00 00 00 03 00

Fourth Byte:
The last byte is used for controlling the central wheel. This byte is very
simple; it does not change if we move the wheel faster. It only changes of
value when we change the direction of the wheel.

Up Movement Down Movement

00 00 00 01 00 00 00 FF

18

• Motion Control of Industrial Robots by 3D Mouse.

This is the overview of how the 2D mouse works:

 Figure 13: 2D mouse communication protocol

2.2.3.2 Conclusion of the preliminary study.

As we can see in the information presented above, the 2D mouse uses 4 bytes to
transmit all the information: the 3 buttons, the left-right movement, the up-down
movement and the wheel.

The first conclusion that we can draw is that the information will be organized in
the same way for the 3D mouse. We only have to find out which byte
corresponds to each movement.

19

 00 00 01 00

 00 00 FF 00

 00 FF 00 00 00 01 00 00

 02 00 00 00 04 00 00 00 01 00 00 00

• Motion Control of Industrial Robots by 3D Mouse.

2.2.3.3. Communication Protocol of the 3D mouse.

If we pay attention to the architecture of the mouse, we can divide the possible
movement in 2 groups: translation and rotation movement.
We will have the X, Y and Z axes for the translation movement and the Rx, Ry and
Rz axes for the rotation movement. That is, 6 different movements which enable us to
reach any position of the space.
Using the HID View we can know the value between 500 and -500 of each
coordinate. It means that we can assign each movement to its respective coordinate:
X, Y, Z, Rx, Ry or Rz.
The URB View gives us the bytes that the mouse sends with each movement of the
handle.

The stream of bytes sent has the following characteristics:
 If you do not touch the handle of the mouse, any data is sent through the USB

port.
 If you are touching the handle of the mouse, a stream of bytes is sent each 15

milliseconds.
 Every stream of bytes has 7 bytes.
 The first byte is used to distinguish the rotation movement from the translation

movement
1. If the first byte is 01, this stream of bytes gives the information about the

translation.
2. If the first byte is 02, this stream of bytes gives the information about the

rotation.

1. Translation Movement:

When a translation movement byte is sent, the first byte is always 01. We have
6 other bytes; 3 of them are used to count the number of degrees, and the 3
other ones are used as overflow bytes because with one byte only, we cannot
measure more than 256 positive degrees.
These 3 overflow bytes give us the possibility to measure positions bigger than
256 degrees, as well as the opportunity to measure negative positions.

20

• Motion Control of Industrial Robots by 3D Mouse.

The overflow bytes can have these different values and each one has the following
meaning:

VALUE MEANING
00 Positive value

No overflow
01 Positive value

Overflow.
FF Negative value

No overflow
FE Negative value

Overflow

In the table below, we can see the connection between the bytes and the axes:

1st Byte 2nd Byte 3rd Byte 4th Byte 5th Byte 6th Byte 7th Byte
Translation
Byte01

X-
Counter

X-
Overflow

Y-
Counter

Y-
Overflow

Z-
Counter

Z-
Overflow

To understand better how the overflow works we can look at the example below:

X-Counter X-Overflow Number of degrees
A5 00 A5h=165 positive degrees.

06 01 6h+256=262 positive degrees

4B FF 4Bh=75  256-75=181 negative degrees

BE FE BEh=190(256-190)=66  66+256=322 negative degrees

21

• Motion Control of Industrial Robots by 3D Mouse.

This graphical explanation shows us which byte corresponds to each movement. We
can see a box next to each arrow.

This box always has in the first position the number 01 because this is the
translation movement.
If you see dots, it is because these bytes don't correspond to this movement.
The XX represents the value in degrees that we have at any moment.
The FF or the 00 value give us the direction of the axis in which we are.

 Figure 14: Schematics of the translation movement.

2. Rotation Movement:

The rotation movement byte is exactly the same as the translation movement
byte. The only difference is that the first byte, in this case, is 02.
In the following table, we can see the correspondence:

1st Byte 2nd Byte 3rd Byte 4th Byte 5th Byte 6th Byte 7th Byte
Rotation
Byte02

Rx-
Counter

Rx-
Overflow

Ry-
Counter

Ry-
Overflow

Rz-
Counter

Rz-
Overflow

22

• Motion Control of Industrial Robots by 3D Mouse.

This drawing represents the rotational movement and follows the same rules as the
previous one:

 Figure 15: Schematics of the rotation movement.

23

• Motion Control of Industrial Robots by 3D Mouse.

3. Technical description of the developed system

At this point, we know everything about the electronics of the internal circuits that
compose the 3D mouse, the communication protocol that the mouse uses when it
sends the commands concerning the movements of the handle, and the robot to which
the mouse will be attached, with all the possible movements and rotations of all its
joints.
It is now the moment to develop the real application that we are going to use to handle
the arm of the robot.
To carry out this task, we had to choose the most suitable software and programming
language:

3.1. Software.
The software used to develop the project depends a lot on the programming
language chosen. There were two candidates: Eclipse IDE for Java Developers
if we work in Java and Microsoft Visual Studio if we work in C++.

1. Eclipse is the software platform most used if we use Java. This
program has comprising application frameworks and runtime libraries.
This platform also contains an integrated development environment
(IDE). But the main feature that we can mention about Eclipse is that it
is open source software, and the most important is that it is free, and
everybody can use it.

2. Microsoft Visual Studio: This software does not only support C++ as
programming language, with it, we can also use several languages. It is
the main integrated development environment that Microsoft can offer
us. The software can be used to develop graphical user interface and
console applications. At this point we can say that this is the best
option if we want to develop the project in C++.
The available version of this program that we have in the laboratory is
Microsoft Visual Studio .NET 2003.

24

• Motion Control of Industrial Robots by 3D Mouse.

3.2. Programming language.
Looking at the programming languages there were only two real possible
candidates: Java and C++.
3. To read the data sent through the USB port in Java, there are a lot of

possibilities. In our case, the program has to be developed under Windows
and not under Linux. If we use this operative system, there are hundreds of
examples and projects that we can consult if we have any doubt. The main
drawback when using Java as programming language is that it is difficult
to develop any application if we do not work under Linux. However I
found a project called Java USB API for Windows that is part of the open
source project jUSB. Once all these information found, we could start to
work with Java.

4. The other option was C++. This is a widespread programming language in
which I could find a lot examples and advice from other colleagues when I
was stuck at one point. Moreover, I have much more skills in C++ than in
Java.

I evaluated all the possibilities explained above and I decided that the best idea was to
use C++ as programming language and Microsoft Visual Studio .NET 2003 as
software to develop this project.

3.3. General structure.
The application that I have made to carry out this project has two different parts. The
first is the part where the data of the 3D mouse 3DConnexion of Logitech is read. To
do that, the Logitech web page was very useful because I could find a lot of
information and examples in the SDK (Software Development Kit) part.
The other part is the one where the data read of the mouse is represented in 2D
graphs. To do that, I found some help searching for useful information on Google as
well as some examples that I could use as a template to develop the application with
the features that I needed.

25

• Motion Control of Industrial Robots by 3D Mouse.

3.3.1 Specifications of the project.
The aim of this project is supposed to handle a robot arm using the programming
teaching method Walk-through. It means that the 3D mouse will be attached at the
end of the robot arm. The programming teaching method chosen will change the way
to program the application and the commands sent to the robot.
In this case, we have the robot ABB IRB-140 manufactured by ABB that we can see
on the picture:

This robot is a 6 axes robot as it is described in
the respective previous section.
The point is that this project will not develop
the final application to handle the 6 axes robot
arm.
This project is a previous study where we will
get the knowledge needed to drive directly the
motion of this ABB robot based on a
commercial 3D mouse.
The mouse will be attached to the robot,
allowing that a human operator can
pull/push/rotate the mouse.
As the mouse will be attached to the robot, the
programming method used will be walk-
through. Figure 16: ABB IRB-140 Robot

The main features of the project are:
1. The robot has one maximum of 6 axes/joints that we can drive.

2. The study that is going to be done will be with one joint.

3. This joint will be attached, and it will have a fixed point that it will not be possible
to be moved.

4. Regarding the previous specifications, to have a mouse with 6 different coordinates
that can be moved in 6 different direction of the space is not totally necessary.

5. For that reason the translation and rotation movement will be considerate the same.

26

• Motion Control of Industrial Robots by 3D Mouse.

3.3.2 Reading the 3D mouse commands.
Reading the commands that the 3D mouse sends with each movement of the handle
was one of the most difficult tasks of this project. It was also the part that took me the
most time and for which I had to research more. The first attempts consisted in trying
to use Java but finally, with the help found in the 3DConnexion web page, I could
find some C++ functions that let me read the data of the mouse and I could convert
this data into the respective coordinates of the space: three coordinates for the
translation movement and another three for the coordinates of the rotation movement.

I found the most significant information by searching in the 3DxInput API. [5]

API is the abbreviation of Application Program Interface, a set of routines, protocols,
and tools used to built software applications. A good API makes the development of a
program easier by providing all the building blocks. Then, a programmer puts the
blocks together.
Most operating environments, such as MS-Windows, provide an API so that
programmers can write applications that are consistent with the operating
environment. Although APIs are designed for programmers, they are ultimately good
for users because they guarantee that all programs using a common API will have
similar interfaces. This makes the learning of new programs easier for users. [2]

On the previous API, 3DxInput, we can find all the information that we need about
the 3D mouse and the way it works. But there were only a few functions that were
useful in the final application. In this paper, I am going to talk only about two of them
only. The one that gets the translation data and the one that gets the rotation data:

I. MathFrameTranslation:
As we will see in the following source code of the C++ function, this function
is a very simple function that just stores the value of the current coordinates in
one variable.

void MathFrameTranslation(MathFrame*Frame,real X,real Y,realZ)
{
 Frame->MathTranslation[0] = X;

 Frame->MathTranslation[1] = Y;
 Frame->MathTranslation[2] = Z;

}

 The table below displays which translation movement corresponds to each
coordinate.

27

• Motion Control of Industrial Robots by 3D Mouse.

TRANSLATION
Handle Movement.

Value of respective variable.

Positive X-Axis
0 to 1

Negative X-Axis
-1 to 0

Positive Y-Axis
0 to 1

Negative Y-Axis
-1 to 0

Positive Z-Axis
0 to 1

Negative Z-Axis
-1 to 0

28

• Motion Control of Industrial Robots by 3D Mouse.

 The three coordinates X, Y and Z can have positive and negative values.
The X axis has its maximum value in 1 and the minimum in -1.

If we release the handle of the mouse the value is 0.
If we push the handle in the positive X axis direction the value of this
variable will increase.
If we reach the maximum position of the joystick the value of the variable
will be 1.

 The following data is the information that we can find in the 3DxInput
API:

Sensor: Translation
Description
This property returns the translation component of the sensor data. This is a read
only property.
Syntax (COM)
result = ISensorPtr ->get_Translation(&IVector3DPtr)
Property: IVector3DPtr Pointer to an Vector3D component interface.

Return: (HRESULT) result S_OK if successful

II. MathFrameRotation:
This function is pretty similar to the previous one. Its role is to get the data of
the rotational movements. It is almost the same as the translation function; the
only difference is that the rotation function makes some calculation.

First, it gets the three coordinates and calculates the sine and cosine of
those values.
Then the function performances the rotation value with the suitable
mathematical operations.

29

• Motion Control of Industrial Robots by 3D Mouse.

We can see the implementation of the function below:

void MathFrameRotation(MathFrame*Frame,realRoll,real Pitch, real Yaw)
{
 real sa,ca, sb,cb, sc,cc;
 real sacc, casc, sasc, cacc;

 sa = (real)-sin(Yaw); ca = (real) cos(Yaw);
 sb = (real)-sin(Pitch); cb = (real) cos(Pitch);
 sc = (real) sin(Roll); cc = (real) cos(Roll);

 Frame->MathRotation[0][0] = ca*cb;
 Frame->MathRotation[1][0] =-sa*cb;
 Frame->MathRotation[2][0] = -sb;

 sacc = sa*cc;
 casc = ca*sc;
 sasc = sa*sc;
 cacc = ca*cc;

 Frame->MathRotation[0][1] = sacc - casc*sb;
 Frame->MathRotation[1][1] = cacc + sasc*sb;
 Frame->MathRotation[2][1] = -cb*sc;

 Frame->MathRotation[0][2] = sasc + cacc*sb;
 Frame->MathRotation[1][2] = casc - sacc*sb;
 Frame->MathRotation[2][2] = cb*cc;

}

 In the following table, we find the same information as we have in the
translation movement table:

The rotation movement follows the same rules as the translation movement.

30

• Motion Control of Industrial Robots by 3D Mouse.

ROTATION
Handle Movement.

Value of respective coordinate.

Positive X-Axis
0 to 1

Negative X-Axis
-1 to 0

Positive Y-Axis
0 to 1

Negative Y-Axis
-1 to 0

Positive Z-Axis
0 to 1

Negative Z-Axis
-1 to 0

31

• Motion Control of Industrial Robots by 3D Mouse.

 The next data is the information that we can find in the 3DxInput API about
this function:

Sensor: Rotation
Description
This property returns the rotation component of the sensor data. This is a read only
property.
Syntax (COM)
result = ISensorPtr->get_Rotation(&IAngleAxisPtr)
Property: IAngleAxisPtr Pointer to an AngleAxis component interface

Return: (HRESULT) result S_OK if successful

 Now that we know which functions are used to read the USB port, the way these
functions work and which values we are going to get, it is time to draw some
conclusions.

There are two functions, which can be positive or negative,that give us the
value of the three coordinates of the space for the translation movement and
three values for the coordinates of the rotation movement.
We know thanks to the USB traffic analyzer that I used at the beginning of this
project, the 3D mouse sends the data of the current position of the handle each
15 milliseconds.
In the next part of the project, we will use those functions to get the current
position of the joystick at any time. These functions will be combined with the
other function necessaries to reach the purpose of this project.

3.3.3 Representation of the data.
Now that we have the values of the coordinates, we can continue with the second part
of the project; that is, the representation of this data.
The way I am going to do this is in 2D graphs. More specifically I am going to do
three charts where the three possible combinations of coordinates will be shown.
Firstly, I am going to explain how the charts are made. The features and the main
differences between the two types of charts that compose the application are also
going to be explained.
The final application uses Microsoft Foundation Class Library, MFC, which is a
library that wraps portions of the Windows API in C++ classes, including
functionality that enables them to use a default application framework. Classes are
defined for many of the handle-managed Windows objects and also for predefined
windows and common controls. There are MFC classes for using GUI elements,
accessing databases, handling Windows messages from other applications, and
dealing with keyboard/mouse input. [3]

32

• Motion Control of Industrial Robots by 3D Mouse.

The main class used in this project is the class used to build a chart: CChart.
I. CChart:

This is the only special class that is used in this project. It is derived from the
CWnd class. This class provides us with the functionality of plotting a 2D
graphs in the principal window of the application.
The CChart class has a lot of functions that give us the possibility to make the
graph as we need. First of all, it is necessary to call these three functions that
will do the following role:

InitialUpdate(); //This function enables us to create and customize the chart.
OnTimer(); // The data that we want to plot is put on this function.
OnPrint(CDC *pDC); // This function is used to print on the chart.

― To customize the chart several functions have to be used. Some of the most
important are going to be explained below.

1. To set the axes label we can call this function:
SetAxisLabel(Cstring strLabelX , Cstring strLabelY)

2. The function that has to be used to set the chart title is:
SetChartTitle(Cstring str)

3. The range of each axis can be fixed calling this function. In the example
below the range is 100 like in the charts of the application.
SetRange(double Xmin, double Xmax, double Ymin, doubleYmax)

SetRange(-100,100,-100,100)

4. To set the style of the axes we have to call this function. The
correspondence can be seen below. All the graphs in this application will be
with the style 4 quadrant.
SetAxisStyle(int nStyle)//0: Single Quadrant

//1: Double Quadrant

//2: 4 Quadrant

5. Using this function we can set the grid scale and the label that will be
plotted on screen.
SetGridNumber(int nGridX , int nGridY)

33

• Motion Control of Industrial Robots by 3D Mouse.

6. We can also personalize the chart choosing the colours that we want.

m_BGColor = RGB(0,0,0,) // Set background colour to black

m_AxisColor = RGB(255,0,0); // Set axis colour to red

m_GridColor = RGB(120,120,120); // Set grid colour to grey.

7. All the other functions were used to customize the chart but the most
important function in the application is the following:
BOOL SetXYValue(double x, double y, int index, int iSerieIdx);

This function is called each time that a command is received through the
USB port; that is, if we push the handle in any direction and do not release
it, each 15 milliseconds.
The function is included in the function OnTimer(), that is called each 15
milliseconds if the handle is not released.
To get the aspect of one vector, that is a line, the SetXYValue function is
called 10 times. Otherwise, only a dot will be represented in the chart.
Calling several times the function allows us to draw a line. Moreover, this
line will be at the desired position and with the desired length.

― Now that we know all the functions available to customize our charts, we can
look at the following picture, which is an example of the charts that we can
find in the application.

 Figure 17: Aspect of the charts of the final application.

34

• Motion Control of Industrial Robots by 3D Mouse.

3.3.4 Technical aspects of the representation.
At this point, we know how to get the data of the mouse, how to plot a chart and how
to plot the values of the coordinates in this chart; it is now time to speak about some
technical aspects that must be taken into consideration.

3.3.4.1. Translation vs. Rotation:
As we already know, in this project the translation and rotation movements are the
same. It means that if we make a positive X axis translation movement and if we
make a positive X axis rotation movement, we are going to obtain the same result.

? But what happens when the translation and rotation movements of the same axis do
not have the same sign?

In the program of the application there are 6 variables to store the current values
of the coordinates. Three of them are for the translation movement and the other
three for the rotation movement.
These variables can have a value from -1 to 1. To have the possibility to
distinguish between translation and rotation movement this is what I did.
Before sending the value of the variables to the function that plots them, the two
values are added. The final result will be the one which is going to be sent to be
plotted.
If the result of the addition is more than 1 or -1, the value that is sent to be
plotted is reduced to 1 or -1 respectively.
If the value of the translation X-axis is 1, which is the maximum; and the rotation
X-axis is -0.75, the length of the vector plotted will be a 25% of the maximum
length.

3.3.4.2. Handle Vibrations:
A problem that I could notice when I was implementing the application was that when
you are pushing the handle of the mouse and then you release it, there are small
vibrations that enable the mouse to send commands. These commands move the
arrow of the vector whereas it was not the order given.
The solution taken to avoid this problem was the following:

1. All the values for which the absolute value does not reach more than 5% of the
maximum value will be treated as zero.

2. This solves all the problems caused by the vibrations as the values received
because of these vibrations never reach values bigger than the 5% of the
maximum.

3. An error of 5% of the total is acceptable. This error does not affect the use of
the final application and it does not affect the reliability of the application either.

35

• Motion Control of Industrial Robots by 3D Mouse.

4. Experiment with the system:
In the main window of the application of the project there are 6 different charts. These
charts are divided in two groups. Both groups have 3 charts. Each chart corresponds
to each pair coordinates represented by: X-Z, X-Y and Y-Z.

4.1 Current position:
The aim of this project is not to simulate the real movement of the ABB robot with its
6 joints. This project is just an approximation, where a low cost system for driving the
movements of the robot will be tested.
The real aim of the project is to handle one joint with the low cost driving system that
in this case, is the 3D mouse.
The specifications of the project say that the mouse must be attached to the robot.
This leads to the fact that the programming method used has to be Walk-through.
§ The most important aspect that we should keep in mind when the walk-through
method is used is that we have two different points of coordinates, one point of
coordinates for the robot and another one for the mouse.
§ The point is that when the mouse is attached to the robot and we move its
handle, the coordinates of the mouse will change.
§ When we move the arm of the robot, the mouse is moving with it, and the
coordinates of the mouse change with each movement of the robot.
§ For this reason, it is totally necessary to know all the time the current position
of the mouse. With this information we will be able to send the correct commands
to the robot.

This type of chart, called in the application 'current position', shows the position that
the mouse has at any moment when the handle is moving.
§ There is an arrow that starts at the position 0, 0. At the beginning, if we do not
push the mouse the arrow has length 0.
§ If we push the mouse, the arrow will be bigger in the direction pushed.
§ If we release the handle, the arrow will not return to the initial position. This
would be the natural result because when the joystick is released, the commands
received are 0, which means that the arrow has length 0.
§ This is the main feature of this type of chart; when the handle is released, the
arrow stays at the same position as before.

36

• Motion Control of Industrial Robots by 3D Mouse.

§ This means that we know all the time the current position of the mouse.
§ The charts of current position are made with a maximum value of 100 and a
minimum value of -100.
§ This simulates the real action of the robot. Because a real robot has a maximum
position, when you reach this position the joint of the robot cannot continue
moving.
§ When the maximum position is reached, the length of the vector does not
increase anymore.

An example of the charts explained above is the following:

Figure 18: Current Position charts.

Looking at these three charts, we can see:
 The three coordinates X, Y and Z are represented in two of the three charts.
 In the first and the second charts, the X coordinate is in the horizontal axis. We

can see that the value of the X-axis is the same in both charts. The only difference
is that in the first one, the vertical axis is the Z coordinate and it is positive; and in
the second chart the vertical axis is the Y coordinate and it is negative.

 With all these information, the current position can be reconstructed and know at
every moment the position of the end of the robot and the position of the 3D
mouse that we are handling.

37

• Motion Control of Industrial Robots by 3D Mouse.

4.2. Vector state:
The other type of chart that there is in the application is called vector state. The charts
are pretty similar to the current position charts that are described above.
 In this type of charts the state of the vector, or the state/value of the coordinates of

the mouse is/are represented.
 That is, the axis range of these charts is from -1 to 1. This is the range of value

that the coordinates received through the USB port can have.
 The pairs of coordinates are the same as the type seen before; each current

position chart has its respective vector state chart just below it.

On the following image we can see the vector state’s charts:

 Figure 19: Vector State charts.
As we can see on the picture this type of chart works in a pretty similar way as the
current position chart. The next lines give a brief description of its main features:

1. When the handle is pushed until the maximum position that we can reach, the
arrow of the vector will have a length of 1, which is the maximum value.

2. If the handle of the mouse is pushed until half of the maximum position that the
mouse can reach, the arrow of the vector that is represented will reach a length of
0.5 on the chart.

3. If the handle is pushed, the vector is represented on the chart and then when the
handle is released, the vector will decrease until 0.

4. This is the main difference between these charts. This type, that is to say when the
handle is released, does not keep the arrow on the screen. It gives us the
information of the commands that the mouse sends at every moment.

5. This type of chart represents the information of the data that the mouse sends at
every moment. In conclusion, the vector state charts represent the coordinates of
the handle of the mouse, and the current position charts represent the coordinates
of the end of the robot, or in other words, the physical position of the mouse.

38

• Motion Control of Industrial Robots by 3D Mouse.

On the next images we can see the differences between both types of charts:

 Pushing the mouse Releasing the mouse

 Figure 20: Comparison between types of charts.

The first image shows the state of the charts when the handle is pushed. When the
handle is released, we can see the difference between both types. In the current
position chart the vector stays in its last position and in the vector state chart the
vector returns to the initial 0 position.

39

• Motion Control of Industrial Robots by 3D Mouse.

4.3. Test scenario.
Scenario testing is a software testing activity that uses scenario tests, or simply
scenarios, which are based on a hypothetical story to help a person to think through a
complex problem or system. They can be as simple as a diagram for a testing
environment or they could be a description written in prose [4]

These are the steps that a test scenario is composed of:

4.3.1. Purpose of the test:
The purpose of the test is to make a practical demonstration of what is explained in all
this paper. This paper explains in detail all the steps to follow to reach this point; that
is the test scenario.
This test is the practical part of the project, where the results of all this work will be
tested.

4.3.2. Hardware requirements:
The test scenario does not have any special hardware requirements. The principal
device used to make the test is the 3D mouse 3DConnexion manufactured by
Logitech. Moreover, a personal computer or laptop with Windows operative system is
needed. This test will not succeed if our application is running under Linux.

4.3.3. Software requirements:
The software requirements to make this test scenario are very simple. We need the
software Microsoft Visual Studio .NET 2003. Inside this software, the project is a C+
+ project MFC application. The Microsoft Visual Studio version recommended is the
previous one, but a newer version of the one used in this project is also valid.
The drivers of the 3D mouse are also required. These drivers are given by Logitech.
They are not editable and we need to have them installed on the computer under the
test that is going to run.

4.3.4. Description of how to perform the test:
 1. The first thing that has to be done is open the project called 3DMouse with the

designed software Microsoft Visual Studio .NET 2003.

2. The second step in built the project and on the Debug tab click Start.

40

• Motion Control of Industrial Robots by 3D Mouse.

3. In this moment the principal window of the application will be appear on the
computer, in mode full screen.

4. The main window has 6 charts and 2 buttons. The buttons are Start and Restart.

To start with the test the start button must be clicked.
As we know in the current position charts, when we release the mouse
the vector stays on the last position. If we want to restart the position
of the vector and return it back to the initial 0 position, the Restart
button must be pushed.

5. When the Start button is pushed the real test starts. In this moment is when we
can move the handle of the 3D mouse in all the possible directions of the space and
see the results on the screen.

4.3.5. Expected results or succeed criteria for the test:
The final result obtained is pretty satisfactory. This test scenario gave us the
possibility to move the handle of the mouse and to see in real time how the vectors of
the pairs of coordinates move on the charts.
This image shows the aspect of the final application with the 6 charts:

 Figure 21: View of the final application.

41

• Motion Control of Industrial Robots by 3D Mouse.

Another very important feature that the application has is the possibility to see the
values of the 6 coordinates, translation and rotation, on the output window. In this
way the graphical results can be contrasted with the numerical value of all the
coordinates.

The following image shows the output window:

 Figure 22: Image of the output window.

42

• Motion Control of Industrial Robots by 3D Mouse.

5. Conclusions.

5.1. Project evaluation.
Now that the project is almost finished, some very interesting and useful conclusions
can be drawn.

1. At the very beginning of the project a feasibility study was made to set which
method was the best to carry out the task of reading the data through the USB
port.
A 3D mouse was disassembled and its electrical components and circuits studied
in detail. Finally, the option of reading the data using a USB traffic analyzer was
taken as the best option. Making this feasibility study, now we can say which op-
tion is the best and why.

2. Another very important point that we have executed is to transcribe the commu-
nication protocol that the 3D mouse uses. Thanks to the USB traffic analyzer we
know the meaning of the codes received with each movement that is made with
the handle of the mouse.

3. The available robot ABB IRB-140 has six joints and the available mouse has six
possible directions. But the project I have developed is to handle one joint. This is
for these reasons that:
 The programming method used is Walk-through and not Lead-through. This

makes the programming totally different because it is necessary to know the
current position of the end of the robot, or the physical position of the mouse
at every moment.

 If only one joint is developed, most of the work is done because when we
know how a joint works, to combine the rest of the joints in one application is
not a very complicated work.

4. The final application already available has a lot of advantages. In my opinion, if
you need to handle a robot with a 3D mouse, if you have an application where the
movements of the joystick and their values are monitoring and we can see them on
the screen of the computer it is a very useful and essential tool.

5. As a final thing, in this project there are two types of charts, current position
charts and vector state charts. These are the main conclusions that these charts
give us:
 The current position charts tell us the current position of the end of the robot,

and in other words, the physical position of the mouse. As the programming
method used is Walk-through, we need to know this information at every mo-

43

• Motion Control of Industrial Robots by 3D Mouse.

ment. The final application gives us this information monitoring on a 2D
chart.

 The vector state charts give us the coordinates of the handle of the mouse.
With it, we know the position of the handle at every moment. This informa-
tion is also very important because these coordinates will be the commands
sent to the robot to move its arm.

 The information of the current position charts will give us the data needed to
modify the information of the other type of charts according to the position of
the robot’s arm.

5.2. Options for future development.
 The primitive aim of this project was to develop a low cost system for driving

directly the robot with the tool chosen, in this case the 3D mouse, attached to the
robot.

 At the beginning, I did not know anything about the way I could manage the
mouse. Now that the feasibility test has been done, these results could be used in
other similar applications that would need the 3D mouse used in this project.

 This project handles one possible joint out of of six possible. To extend the
number of joints used is not very complicated. Now that we know how one joint
works, we can implement the use of the six joints of the robot developing a not
very complex work.

 An application that monitors the position of the robot's arm and the coordinates of
the handle of the mouse has been done. This is a very useful tool to continue
developing the handling of the six joints of the robot because the position of the
robot and the position of the joystick are shown in real time on the screen. If the
use of the six joints is added to the application, this part does not need to be
changed deeply. Moreover, if we use the 3D mouse with another aim, the options
that this application already gives us are very useful.

44

• Motion Control of Industrial Robots by 3D Mouse.

6. References.

[1] http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html.
 Definition of the respective programming methods. 27/08/08
[2] http://www.webopedia.com/TERM/A/API.html.
 Definition of API 27/08/08
[3] http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library.
 Definition of MFC 27/08/08
[4] http://en.wikipedia.org/wiki/Test_scenario.
 Definition of test scenario 27/08/08
[5] http://www.steelbrothers.ch/jusb/api/usb/windows/related-docs/JavaUSBforWindowsWeb.pdf

 Java API. 27/08/08
[6] http://www.aggsoft.com/usb-port-monitor.htm
 Downloaded of the software USB Port Monitor. 27/08/08
[7] http://www.hhdsoftware.com/Products/home/usb-monitor.html
 Downloaded of the software Device Monitoring Studio. 27/08/08
 http://www.robotsltd.co.uk/robot-guide.htm
 Chart with movement of the joints of the robot. 27/08/08
 www.abb.com
 General information about the ABB robot. 27/08/08
 http://www.robots.com/abb.php?robot=irb+140
 Global description of the robot. 27/08/08
 http://html-color-codes.com/rgb.html
 Colour code for the charts. 27/08/08

45

http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_4.html
http://html-color-codes.com/rgb.html
http://www.robots.com/abb.php?robot=irb+140
http://Www.abb.com/
http://www.robotsltd.co.uk/robot-guide.htm
http://www.hhdsoftware.com/Products/home/usb-monitor.html
http://www.aggsoft.com/usb-port-monitor.htm
http://www.steelbrothers.ch/jusb/api/usb/windows/related-docs/JavaUSBforWindowsWeb.pdf
http://www.steelbrothers.ch/jusb/api/usb/windows/related-docs/JavaUSBforWindowsWeb.pdf
http://en.wikipedia.org/wiki/Test_scenario
http://en.wikipedia.org/wiki/Microsoft_Foundation_Class_Library
http://www.webopedia.com/TERM/A/API.html

	MOTION CONTROL OF INDUSTRIAL ROBOTS BY 3D MOUSE
	Abstract:
	Table of contents:
	1. Introduction.
	 		1.1.3. Off-Line Programming……………………………………6
	 		1.1.4. Comparison between methods.……………………………6
	1. Introduction.

